
Analytical Model for BitTorrent-based Live Video
Streaming

Saurabh Tewari, Leonard Kleinrock
Computer Science Department

University of California at Los Angeles
Los Angeles, U.S.A

Abstract— Peer-to-peer live video streaming over the Internet has
been measured to support over 100,000 concurrent users. While
the approach is very attractive, established providers need to
understand the performance of such a system before deploying
such a system as a frequent loss in quality would jeopardize their
reputation. This paper provides an analytical model to inform the
design of BitTorrent-based live video streaming solutions. While,
given the current broadband deployment scenario, a pure peer-
to-peer solution can support only limited streaming rates, our
analysis shows that the addition of a well-designed peer-to-peer
solution to existing server-based streaming infrastructures can
allow substantially higher streaming rates. The efficiency of a
BitTorrent-like peer-to-peer solution depends on the peer group
size and the number of fragments available for sharing at any
given time. Our analysis suggests that the efficiency of the peer-
to-peer solution is not sensitive to the size of the peer group for
groups larger than 15-20 users. A similar threshold exists for the
number of fragments available for sharing at any given time. For
live streaming scenarios, this threshold dictates that the fragment
size be substantially smaller than the default fragment size in
BitTorrent to ensure that the stream latency is small.

Keywords-Live Streaming, Peer-to-Peer, BitTorrent, Video,
Efficiency, Latency

I. INTRODUCTION
In early peer-to-peer file-sharing systems, files could be

exchanged only when peers had the files in their entirety.
However, since most users leave the system when the file
download completes, a very small fraction of the total peer
upload capacity was ever utilized. By fragmenting files into
small pieces (and by employing a Tit-for-Tat policy in
choosing the peers to which a peer would upload fragments to),
BitTorrent [1] allowed utilization of a large fraction of the total
peer upload capacity. The idea of exchanging fragments also
enabled supporting streaming applications over a peer-to-peer
network and several peer-to-peer video streaming applications
e.g. CoolStreaming [3] and PPLive [5] have come up in recent
years. Measurements on these systems report over 100,000
concurrent users on a single channel for PPLive [6] and over
25,000 concurrent users on a single channel for CoolStreaming
[4]. These numbers have generated interest in using this
approach for commercial live video streaming. While the
scalability of peer-to-peer solutions [8] is very attractive,
established providers need to understand the performance of a
system utilizing peer-to-peer technology before they deploy it

in their systems as users have come to expect a certain level of
quality from them and any large deviations from customer
expectations would be detrimental to their reputation. In this
paper, we provide an analytical model to inform the design of a
BitTorrent-based live video streaming solution. Given the
asymmetric nature of the broadband access links currently in
deployment, it is obvious that a pure peer-to-peer solution can
support only limited streaming rates. Our work in this paper
allows service providers to estimate the server-side capacity
needed to support a targeted number of users at a given
streaming rate.

The key objective in using peer-to-peer technology for
streaming (and other content distribution applications) is to
utilize the end-user upload capacities to support the streaming
application. We refer to the fraction of total end-user upload
capacity that can be utilized as the efficiency of fragment
exchange in BitTorrent-like systems in this paper. Our
analytical work in this paper will allow system designers to
select appropriate parameters of a BitTorrent-based live
streaming solution with the knowledge of the fraction of peer
upload capacities their design will be able to utilize and the
playback delay the fragment exchange process will introduce.

In Section 2, we review the related work in the area.
Section 3 illustrates the enormous reductions in the server-side
capacity a well-designed peer-to-peer solution can offer. In
Section 4, we discuss the effect of peer group size on the
efficiency of fragment exchange. Section 5 discusses the
importance of the number of fragments available for sharing in
determining the efficiency of fragment exchange. We discuss
the implications of our analysis in Sections 4 and 5 for design
of a BitTorrent-based peer-to-peer live video streaming
application in Section 6. Our analysis in Section 6 establishes
the tradeoff between the efficiency of fragment exchange and
the playback delay due to allowing for fragment exchange and
illustrates the critical role of the fragment size in a peer-to-peer
live streaming service. Section 7 concludes the paper.

II. RELATED WORK
Our work in this paper builds upon the BitTorrent peer-to-

peer protocol [1]. File distribution over BitTorrent comprises of
a tracker hosted on a website that maintains a list of the peers
currently downloading the file (along with information on the
amount of file data each peer has downloaded and uploaded
and the amount of the file data they still need to obtain). Each

peer wishing to download the file obtains the torrent for the file
which includes the location of the tracker and a list of all the
pieces (fragments) into which the file is broken into and hash
values for each file fragment (to enable verification of the
integrity of the downloaded fragment). The peer then contacts
the tracker which provides it a list of about 50 randomly
selected peers (whenever that many peers are available) and
each peer tries to maintain links to 20-30 other peers and keep
information of the fragments each of these 20-30 peers has.
Based on this information and the fragments a peer needs, a
peer requests fragments to download from these peers. To
maintain diversity of the fragments available for download in
the network, peers request the fragments which fewest number
of peers have (this is referred to as the rarest-first download
policy in BitTorrent). A peer that has multiple download
requests pending will upload fragments to the peers that are
uploading data to it at the fastest rate. This mechanism is
referred to as the Tit-for-Tat upload policy and is the key
incentive mechanism in BitTorrent [2] considered responsible
for it success. Peers try to upload fragments to 4-5 other peers
at any given time (to keep their upload capacities utilized). To
find new (faster) fragment sources, peers optimistically
unchoke [2] a random peer every 30 seconds or so. Breaking a
file into small fragments allowed BitTorrent to enable peers to
upload fragments to others (Tit-for-Tat enforced such sharing)
while they were still downloading a file. We refer to this
mechanism of peers uploading fragments of the file they have
to other peers that need them as the fragment exchange process
in BitTorrent-like systems. The ability of a peer to contribute to
the content distribution process is determined by whether there
are other peers that want a fragment they have. Larger the peer
group size and larger number of fragments of the file, more
likely it is that there is at least one peer that wants a fragment
that a peer has. While the number of fragments is on the order
of a few thousand in typical file-sharing scenarios (and, hence,
the probability that there would be at least one peer that wants a
fragment that a peer has is nearly 1), in live streaming, only a
few fragments are available for sharing (see discussion in
Section 4 and 5). However, if the peer group size is large, there
may yet be possible that there would be peers that want a
fragment that a peer has. The effect of the peer group size and
the number of fragments available for sharing at any given time
on the probability that there would be at least one peer that
wants a fragment that a peer has (which we refer to as the
efficiency of file exchange and is equal to the fraction of the
total end-user upload capacity that be utilized) is a key
contribution of our work. Such a relation was first provided by
[10] (to best of our knowledge) but they only developed the
case where the number of fragments available for sharing was
very large and, hence, as presented their results have limited
utility for a live streaming scenario. We expand on the analysis
they provide and provide important guidelines for the design of
a BitTorrent-based live video streaming application. We note
that when we refer to peer group size, we are referring to the
number of peers a peer would have links to, and do not imply
that these are isolated groups of peers – connecting to randomly
selected peers would ensure a connected network (the
connectivity considerations are same as that for an Erdos-Renyi
random graph [19]).

There has been considerable work in the area of peer-to-
peer live video streaming. We refer to only a small subset of
the application layer work here omitting interesting approaches
involving media encoding (e.g. [18]) and various network layer
techniques (e.g. [17]). Overlay multicasting work (e.g. End-
System Multicast [12]) can be considered a precursor to “pure”
peer-to-peer streaming. The tree-based structures typically used
in the initial systems are constrained by the limited end-user
upload bandwidth which limits the tree fan-out leading to large
tree depths. This leads to high playback delays for leaf users
and renders these systems susceptible to nodes leaving the
system. These initial systems were followed by mesh-based
architectures (e.g. SplitStream [13], CoopNet [14], PRIME [15]
etc.) and the BitTorrent approach we elaborate upon in this
paper can be seen as taking this approach to the extreme in
allowing a different tree for each fragment. The BiToS [7] and
the BASS [11] works explore using BitTorrent for streaming
and, thus, are similar in spirit to our work in this paper. While
[7] provides insights into designing fragment request policies,
they only mention the importance of appropriate buffer size
selection and do not explore it. Reference [11] proposes a
hybrid server and peer-to-peer based streaming architecture as
expounded in this paper but only offers simulation results on
the savings in the server-side capacity that can be achieved
with a BitTorrent-like peer-to-peer approach to supplement the
server-based streaming. Our work in this paper adds analytical
basis to the work in [11] and complements the work in [7].
Reference [16] suggests modifications to peer selection and
fragment request policies to support streaming applications
and, thus, is complementary to [7] and our work.
CoolStreaming [3] is a frequently cited work in peer-to-peer
live streaming (other widely deployed publicly available peer-
to-peer live streaming systems such as PPLive [5] are
proprietary). CoolStreaming’s core operations (periodically
exchanging data availability information and downloading
unavailable data from and uploading available data to
appropriate peers) are same as in BitTorrent. However, [3] does
not discuss the trade-offs involved in selecting the buffer size
or the target number of peers to maintain connections. Thus,
our work in this paper complements the ideas in [3] and
provides an analytical basis for selecting the fragment size, the
peer group size and the buffer size in a CoolStreaming-like
system.

III. PEER-TO-PEER: BENEFITS AND LIMITATIONS
The target audience of large-scale live video streaming has

asymmetric broadband access. For example, while the average
residential broadband download rates in the United States are
around 2.8 Mbps, the corresponding upload rates average to
only about 500 kbps (see [9] for current statistics). Clearly, it is
not possible to support any live streaming at rates greater than
500 kbps with a pure peer-to-peer live streaming solution even
though the download rates allow offering MPEG-1 or better
quality streams. Thus, major commercial vendors are unlikely
to find pure peer-to-peer live streaming to be adequate in face
of competitive pressures. However, effectively leveraging the
peer upload bandwidths to assist server-based stream delivery
can still offer tremendous competitive advantage. In Figure 1,
we show the server-side capacity requirement as the number of
users increases for different streaming rates and for different

0

10

20

30

40

50

60

70

80

90

100

0 20000 40000 60000 80000 100000
Number of Users

S
er

ve
r-

S
id

e
C

ap
ac

ity
 (i

n
G

b/
s)

350 kbps, No P2P

700 kbps, 95% Util

1 Mbps, No P2P

700 kbps, No P2P

350 kbps, 90% Util
350 kbps, 80% Util

1 Mbps, 95% Util

700 kbps, 80% Util

700 kbps, 90% Util

1 Mbps, 80% Util
1 Mbps, 90% Util

1 Mbps, 50% Util

700 kbps, 50% Util

350 kbps, 50% Util

Figure 1. Benefits of using a well-designed peer-to-peer solution
(Assumption: Peer Upload Capacity is 400 Kbps)

values of the effectiveness of the peer-to-peer solution in
utilizing peer upload bandwidths1.

The first observation we make from Figure 1 is that the
server-side capacity required to support 350 kbps streaming
rate for 100,000 users when no peer-to-peer solution is used is
sufficient to support a streaming rate of 700 kbps if the server-
side infrastructure is augmented with BitTorrent-like peer-to-
peer fragment exchanges among the peers viewing the same
stream which can utilize 90% of the total peer upload capacity.

The second observation we make is the importance of a
well-designed peer-to-peer solution – the difference in the
server-side capacity needed to support 100,000 users at 700
kbps streaming rate is 12 Gbps between a solution that can
utilize 50% of the total peer upload capacity versus one that
can utilize 80% of the total peer upload capacity.

In the remaining paper, we explore the key factors that
determine the peer upload capacity utilization in BitTorrent-
like peer-to-peer fragment exchange scenarios to inform the
design of a peer-to-peer live video streaming system.

IV. PEER GROUP SIZE
As illustrated in the previous section, the fraction of the total
peer upload capacity that can be utilized is the key metric for
capacity planning purposes. The fraction of the total peer
upload capacity that can be utilized to support the peer-to-peer
live streaming application is the probability that, in a group of k
peers, there exists at least one peer that needs one of the
fragments a peer has2. Assuming that the fragments each peer
has are chosen at random from the set of all the fragments that

1 If the peer-to-peer solution can, on average, utilize η fraction the peer

upload capacity and the peer upload capacity is c, the server side capacity
needed to support a streaming rate of x to k users is equal to max(0, k(x−ηc)).

2 To ensure the highest possible utilization of peer upload capacities, a peer
should apply tit-for-tat-like upload policies only to select which peer to upload
to when there are more than one peers requesting content from it. In other
words, peers (e.g., say, peer A) should always be uploading fragments (i.e.
peer upload capacity is being utilized) as long as there exists another peer, say,
peer B that wants a fragment that peer A has.

0.75

0.77

0.79

0.81
0.83

0.85

0.87
0.89

0.91

0.93

0.95

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Peer Group Size

E
ffi

ci
en

cy 5
10
15
20

number of
fragments
available

for sharing

Figure 2. Effect of Peer Group Size on the Efficiency of Fragment Exchange

are currently relevant3 and the fragments each peer has are
independently chosen, this probability, the efficiency for
BitTorrent-like fragment exchange scenarios, is computed in
[10] to be4:

1

0

11
(1)

i

kN
i

n i

N n
N N n

η
−

=

 −
= −  + 

∑ (1)

where N is the number of fragments available for sharing
and k is the number of peers in the group of cooperating peers
in the fragment exchange. We note that, as [10] stated, their
approximation for this expression of η is valid only when N is
large as is the case in typical BitTorrent file-sharing scenarios
(which have over a thousand fragments per file). However, in a
live streaming scenario, future fragments are not available and,
if the offering to remain competitive to a purely server-based
streaming solution, the “live” stream must be played out within
10-20 seconds including any transmission delays. Thus, the
aggregate size of the fragments available for sharing is limited
to few seconds worth of playback buffer. In Figure 2, we show
the effect of k, the peer group size, on the efficiency of
fragment exchange process for different values of N, the
number of fragments available for sharing (with η calculated
using Eq. 1).

From Figure 2, we see that the peer group size has no effect
on the efficiency once the peer group size is more than 7-8.
Given that Eq. 1 is derived under the assumption of

3 For BitTorrent file-sharing, this includes all the fragments of the file

being downloaded. For live streaming, it includes only the fragments available
in the few seconds of the playback buffer each peer maintains.

4 For completeness, we outline the derivation in [10] here. Let peer i have
ni out of the N fragments where ni is uniformly distributed in {0, …, N−1}.
When the required total streaming rate is more than the total peer upload
capacity, a peer’s upload capacity will not be utilized only if every other peer
has all the fragments it has. Therefore,

{ }
1

0

1 Pr(|)
i

N
k

i
n

Peer j needs no fragment from peer i nη
−

=

= −∑

where j is a peer connected to peer i. As nj is uniformly distributed in {0, …,

N−1}, Pr(|)iPeer j needs no fragment from peer i n =
1 1 Pr(

j i

N

n n

j has all
N

−

=
∑

| ,)i jfragments of i n n =
1 1

j i

N
i

j i jn n

N n N
n n nN

−

=

−    
    −    

∑ =
(1)

i

i

N n
N n

−
+

. Substituting

this in the expression for η gives us (1).

independence, we believe that maintaining a peer group size of
15-20 peers would be a more appropriate target for a peer-to-
peer live streaming application.

From Figure 2, we note that the number of fragments
available for sharing is a more important factor in determining
the level of efficiency possible. We explore this in the next
section.

V. NUMBER OF FRAGMENTS AVAILABLE FOR SHARING
Expanding the summation term in Eq. 1, we can write:

1 '1 R
N N

η = − −

where

1 1 1 21 1
2 3

'
1 2 1 1

(1)

k k

k k

k k

k k

N N
R

N NN N

    − + − +    
    =      + +    −     

For peer groups of size larger than 10, the value of R’/N is
negligible5. Therefore, a reasonable approximation for η, the
efficiency of fragment exchange in BitTorrent-like systems, is:

 11
N

η ≈ − (2)

In Figure 3, we plot η, the efficiency of fragment exchange,
against N, the number of fragments available for exchange,
using Eq. 2.

As we can see from Figure 3, the efficiency of fragment
exchange depends heavily on the number of fragments
available for exchange but there are diminishing returns as the
number of fragments get large. For example, if the number of
fragments available for sharing is doubled from 5 to 10, the
efficiency increases from 0.8 to 0.9 (which, for the scenario in
Figure 1, translates into a saving of 4 Gbps of server side
capacity with 100,000 users) but doubling the number of
fragments available for sharing from 40 to 80 increases the
efficiency from 0.975 to only 0.9875 (equivalent to a saving of
0.5 Gbps of server side capacity for 100,000 users for the
scenario in Figure 1). The diminishing returns behavior of the
relation between the number of fragments available for sharing
and the efficiency is important as increasing the fragments
available for sharing directly increases the lag a user will
experience in the stream playback. In the next section, we
explore the implications of this on BitTorrent-based live video
streaming system design.

5 R is strictly decreasing with increasing k. In our computations for k = 10

and N varying from 2 to 100, the value of R/N never exceeded 3.5x10−5 and
was decreasing with N for N > 3.

0.75
0.775

0.8
0.825
0.85

0.875
0.9

0.925
0.95

0.975
1

0 10 20 30 40 50 60 70 80 90 100

Number of fragments available for sharing

E
ffi

ci
en

cy

Figure 3. Effect of the Number of Fragments available for sharing on the
Efficiency of Fragment Exchange

VI. BITTORRENT-BASED LIVE VIDEO STREAMING DESIGN
Our analysis in Section 4 indicates that a peer group size of

15-20 peers is sufficient to realize the peer upload capacity
utilization benefits a large peer group offers. BitTorrent does
try to maintain over 20 peers so the peer group maintenance
aspect of the basic BitTorrent protocol does not need any
modification.

Let us now consider the implications of our results in
Section 5 on the effect of the number of fragments available for
sharing on the efficiency of fragment exchange. Let us say that
we wish to achieve 97.5% utilization of the peer upload
capacity. From Figure 3, this implies that there be 40 fragments
available to be shared. For the default BitTorrent fragment size
of 256KB, this is equivalent to a buffer size of 10 MB. This
buffer is in addition to what a streaming player keeps
“internally” to account for network uncertainties. For a 700
kbps stream, 10 MB of buffering is equivalent to an additional
playback delay of nearly 2 minutes which is unlikely to be
acceptable for a “live” streaming application (this delay does
go down for higher-rate streams but even with a 1.5 Mbps
stream it remains over 50 seconds).

One option to reduce the playback delay while maintaining
high efficiency values is to use smaller fragments. BitTorrent
allows fragments as small as 32KB while the sub-piece size is
16KB (BitTorrent breaks each fragment into sub-pieces to
allow pipelining of requests). By using a fragment size of
32KB, the required buffer size and, consequently, the playback
delay can be cut by a factor of 8 (e.g. for a 1.5 Mbps stream it
goes down to under 7 seconds). The argument against small
fragment size for BitTorrent file transfers is that a small
fragment size will result in a very large torrent file (as a hash
for each fragment is included in the torrent file) which
increases the load on the server hosting the torrent. In the live
streaming case, the fragments are not available ahead of time
so this is not an issue. However, there are limitations on how
small a fragment ought to be. If we wish to support a 700 kbps
stream and target a playback delay on account of achieving
high fragment exchange efficiency to be around 6 seconds, this
is equivalent to 540 KB. If we wish to achieve 97.5%
utilization of the peer upload capacity, we need 40 fragments of
buffering or a fragment size of 13.5 KB. The equivalent
fragment size for a 350 kbps stream would be 6.75 KB which is

getting close to the popular MTU size of 1500 bytes (if we
wish to pipeline requests, a smaller fragment size implies a
smaller sub-piece size but going below a sub-piece size smaller
than the MTU size will be wasteful).

We can summarize the relation between the playback delay
introduced to allow fragment exchange, the fragment size, the
streaming rate and the fraction of the peer upload capacity that
can be utilized as follows:

 1 S
R

η
τ

≈ − (3)

where η is the fraction of the peer upload capacity that can be
utilized, S is the fragment size, τ is the playback delay
introduced to allow fragment exchange, and R is the streaming
rate (N fragments of size S each imply a buffer size of NS
which at streaming rate R would lead to a playback delay of
NS/R; substituting N = τR/S in (2) gives (3)).

There are other modifications that one may wish to do to
the basic BitTorrent protocol. As we noted in Footnote 1, the
peers should use tit-for-tat policy only for peer selection and
not “choke” uncooperating peers if that implies not uploading
to any peer. One may also wish to alter the tit-for-tat policy to
fulfill fragment requests that are close to missing the playback
deadlines. One would also want to alter the rarest-first fragment
request policy (i.e. asking for the fragment that fewest peers
have) to one where the fragments close to missing the playback
deadlines are requested with a higher priority (see [7]). There
can be other modifications e.g. in the information that the
tracker keeps or the list of peers that the tracker returns and we
hope to evaluate the other design choices in future work.

VII. CONCLUSION
Using BitTorrent-like peer-to-peer technology to support

live video streaming over the Internet is an attractive option for
major commercial players in the video streaming area. In this
paper, we argue that a pure peer-to-peer live streaming solution
cannot deliver high-quality streams and the peer-to-peer
solution must be supplemented with server-side capacity. The
paper points out the importance of a well-designed peer-to-peer
solution in such a system and proceeds to explore the key
design factors that determine the server-side capacity that
would be needed to support a target streaming rate to a given
number of users. We show that a peer group size of 15-20 peers
is sufficient to achieve any benefits a large peer group size
would offer. A more important factor in determining the server-
side capacity that would be needed to support a target
streaming rate to a given number of users is the number of
fragments that are available for sharing. We provide an
analytical expression to compute the fraction of the total peer
upload capacity that can be utilized given the number of
fragments that are available for sharing. The number of

fragments available for sharing directly affects the playback
delay users would experience and it is important to balance the
goal of small playback delay against the objective of utilizing
as much of the peer upload capacities as possible. To inform
the selection of the appropriate fragment size, we provide an
analytical expression to compute the fraction of the peer upload
capacity that can be utilized for a given fragment size given a
target playback delay on account of fragment exchange and the
streaming rate.

REFERENCES

[1] BitTorrent Protocol, http://www.bittorrent.org/protocol.html.
[2] B. Cohen, “Incentives Build Robustness in BitTorrent,” In IPTPS,

February 2003.
[3] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet/CoolStreaming: A

Data-driven Overlay Network for Live Media Streaming,” in Proc. of
IEEE INFOCOM'05, Miami, FL, USA, March 2005.

[4] X. Zhang, J. Liu, and B. Li, “On Large Scale Peer-to-Peer Live Video
Distribution: CoolStreaming and Its Preliminary Experimental Results”,
in IEEE International Workshop on Multimedia Signal Processing
(MMSP), October 2005.

[5] PPLive, http://www.pplive.com/en/about.html.
[6] X. Hei, C. Liang, J. Liang, Y. Liu and K.W. Ross, “Insights into PPLive:

A measurement study of a large-scale P2P IPTV system”, in Workshop
on Internet Protocol TV (IPTV) services over World Wide Web in
conjunction with WWW2006, May 2006.

[7] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications”, in Global Internet
Workshop in conjunction with IEEE INFOCOM 2006, April 2006.

[8] S. Tewari and L.Kleinrock, “Proportional Replication in Peer-to-Peer
Networks”, in Proc. of IEEE INFOCOM 2006, April 2006.

[9] ISP Speed Tests, http://www.dslreports.com/archive?c=us.
[10] D. Qiu and R. Srikant, “Modeling and Performance Analysis of

BitTorrent-Like Peer-Peer Networks,” In Proc. of SIGCOMM 2004,
September 2004.

[11] C. Dana, D. Li, D. Harrison, and C. N. Chuah, "BASS: BitTorrent
Assisted Streaming System for Video-on-Demand," in IEEE
International Workshop on Multimedia Signal Processing (MMSP),
October 2005.

[12] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang, "A Case for End
System Multicast", in IEEE Journal on Selected Areas in
Communication (JSAC), Special Issue on Networking Support for
Multicast, Vol. 20, No. 8, 2002.

[13] N. Magharei, R. Rejaie, “Understanding Mesh-based Peer-to-Peer
Streaming”, In Proc. of the International Workshop on Network and
Operating Systems Support for Digital Audio and Video, May 2006.

[14] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A.
Singh, “SplitStream: High-bandwidth multicast in a cooperative
environment”, in Proc. of SOSP'03, October 2003.

[15] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient Peer-to-
Peer Streaming”, in Proc. of IEEE ICNP, November 2003.

[16] G. Wu, T.C. Chiueh, “How Efficient is BitTorrent?,” in 13th Annual
Multimedia Computing and Networking (MMCN'06), January 2006.

[17] X. Jin, K.-L. Cheng, and S.-H. Chan, "SIM: Scalable Island Multicast
for Peer-to-Peer Media Streaming," in Proc. IEEE International
Conference on Multimedia Expo (ICME), July 2006.

[18] J. Li, “PeerStreaming: A Practical Receiver-Driven Peer-to-Peer Media
Streaming System”, Microsoft Research TR-2004-101, Sept. 2004.

[19] Bollobas. B, Random Graphs, Academic Press, London, 198.

