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Abstract— Peer-to-peer live video streaming over the Internet has 
been measured to support over 100,000 concurrent users. While 
the approach is very attractive, established providers need to 
understand the performance of such a system before deploying 
such a system as a frequent loss in quality would jeopardize their 
reputation. This paper provides an analytical model to inform the 
design of BitTorrent-based live video streaming solutions. While, 
given the current broadband deployment scenario, a pure peer-
to-peer solution can support only limited streaming rates, our 
analysis shows that the addition of a well-designed peer-to-peer 
solution to existing server-based streaming infrastructures can 
allow substantially higher streaming rates. The efficiency of a 
BitTorrent-like peer-to-peer solution depends on the peer group 
size and the number of fragments available for sharing at any 
given time. Our analysis suggests that the efficiency of the peer-
to-peer solution is not sensitive to the size of the peer group for 
groups larger than 15-20 users. A similar threshold exists for the 
number of fragments available for sharing at any given time. For 
live streaming scenarios, this threshold dictates that the fragment 
size be substantially smaller than the default fragment size in 
BitTorrent to ensure that the stream latency is small. 

Keywords-Live Streaming, Peer-to-Peer, BitTorrent, Video, 
Efficiency, Latency 

I.  INTRODUCTION 
In early peer-to-peer file-sharing systems, files could be 

exchanged only when peers had the files in their entirety. 
However, since most users leave the system when the file 
download completes, a very small fraction of the total peer 
upload capacity was ever utilized. By fragmenting files into 
small pieces (and by employing a Tit-for-Tat policy in 
choosing the peers to which a peer would upload fragments to), 
BitTorrent [1] allowed utilization of a large fraction of the total 
peer upload capacity. The idea of exchanging fragments also 
enabled supporting streaming applications over a peer-to-peer 
network and several peer-to-peer video streaming applications 
e.g. CoolStreaming [3] and PPLive [5] have come up in recent 
years. Measurements on these systems report over 100,000 
concurrent users on a single channel for PPLive [6] and over 
25,000 concurrent users on a single channel for CoolStreaming 
[4]. These numbers have generated interest in using this 
approach for commercial live video streaming. While the 
scalability of peer-to-peer solutions [8] is very attractive, 
established providers need to understand the performance of a 
system utilizing peer-to-peer technology before they deploy it 

in their systems as users have come to expect a certain level of 
quality from them and any large deviations from customer 
expectations would be detrimental to their reputation. In this 
paper, we provide an analytical model to inform the design of a 
BitTorrent-based live video streaming solution. Given the 
asymmetric nature of the broadband access links currently in 
deployment, it is obvious that a pure peer-to-peer solution can 
support only limited streaming rates. Our work in this paper 
allows service providers to estimate the server-side capacity 
needed to support a targeted number of users at a given 
streaming rate. 

The key objective in using peer-to-peer technology for 
streaming (and other content distribution applications) is to 
utilize the end-user upload capacities to support the streaming 
application. We refer to the fraction of total end-user upload 
capacity that can be utilized as the efficiency of fragment 
exchange in BitTorrent-like systems in this paper. Our 
analytical work in this paper will allow system designers to 
select appropriate parameters of a BitTorrent-based live 
streaming solution with the knowledge of the fraction of peer 
upload capacities their design will be able to utilize and the 
playback delay the fragment exchange process will introduce.  

In Section 2, we review the related work in the area. 
Section 3 illustrates the enormous reductions in the server-side 
capacity a well-designed peer-to-peer solution can offer. In 
Section 4, we discuss the effect of peer group size on the 
efficiency of fragment exchange. Section 5 discusses the 
importance of the number of fragments available for sharing in 
determining the efficiency of fragment exchange. We discuss 
the implications of our analysis in Sections 4 and 5 for design 
of a BitTorrent-based peer-to-peer live video streaming 
application in Section 6. Our analysis in Section 6 establishes 
the tradeoff between the efficiency of fragment exchange and 
the playback delay due to allowing for fragment exchange and 
illustrates the critical role of the fragment size in a peer-to-peer 
live streaming service. Section 7 concludes the paper. 

II. RELATED WORK 
Our work in this paper builds upon the BitTorrent peer-to-

peer protocol [1]. File distribution over BitTorrent comprises of 
a tracker hosted on a website that maintains a list of the peers 
currently downloading the file (along with information on the 
amount of file data each peer has downloaded and uploaded 
and the amount of the file data they still need to obtain). Each 



peer wishing to download the file obtains the torrent for the file 
which includes the location of the tracker and a list of all the 
pieces (fragments) into which the file is broken into and hash 
values for each file fragment (to enable verification of the 
integrity of the downloaded fragment). The peer then contacts 
the tracker which provides it a list of about 50 randomly 
selected peers (whenever that many peers are available) and 
each peer tries to maintain links to 20-30 other peers and keep 
information of the fragments each of these 20-30 peers has. 
Based on this information and the fragments a peer needs, a 
peer requests fragments to download from these peers. To 
maintain diversity of the fragments available for download in 
the network, peers request the fragments which fewest number 
of peers have (this is referred to as the rarest-first download 
policy in BitTorrent). A peer that has multiple download 
requests pending will upload fragments to the peers that are 
uploading data to it at the fastest rate. This mechanism is 
referred to as the Tit-for-Tat upload policy and is the key 
incentive mechanism in BitTorrent [2] considered responsible 
for it success. Peers try to upload fragments to 4-5 other peers 
at any given time (to keep their upload capacities utilized). To 
find new (faster) fragment sources, peers optimistically 
unchoke [2] a random peer every 30 seconds or so. Breaking a 
file into small fragments allowed BitTorrent to enable peers to 
upload fragments to others (Tit-for-Tat enforced such sharing) 
while they were still downloading a file. We refer to this 
mechanism of peers uploading fragments of the file they have 
to other peers that need them as the fragment exchange process 
in BitTorrent-like systems. The ability of a peer to contribute to 
the content distribution process is determined by whether there 
are other peers that want a fragment they have. Larger the peer 
group size and larger number of fragments of the file, more 
likely it is that there is at least one peer that wants a fragment 
that a peer has. While the number of fragments is on the order 
of a few thousand in typical file-sharing scenarios (and, hence, 
the probability that there would be at least one peer that wants a 
fragment that a peer has is nearly 1), in live streaming, only a 
few fragments are available for sharing (see discussion in 
Section 4 and 5). However, if the peer group size is large, there 
may yet be possible that there would be peers that want a 
fragment that a peer has. The effect of the peer group size and 
the number of fragments available for sharing at any given time 
on the probability that there would be at least one peer that 
wants a fragment that a peer has (which we refer to as the 
efficiency of file exchange and is equal to the fraction of the 
total end-user upload capacity that be utilized) is a key 
contribution of our work. Such a relation was first provided by 
[10] (to best of our knowledge) but they only developed the 
case where the number of fragments available for sharing was 
very large and, hence, as presented their results have limited 
utility for a live streaming scenario. We expand on the analysis 
they provide and provide important guidelines for the design of 
a BitTorrent-based live video streaming application. We note 
that when we refer to peer group size, we are referring to the 
number of peers a peer would have links to, and do not imply 
that these are isolated groups of peers – connecting to randomly 
selected peers would ensure a connected network (the 
connectivity considerations are same as that for an Erdos-Renyi 
random graph [19]). 

There has been considerable work in the area of peer-to-
peer live video streaming. We refer to only a small subset of 
the application layer work here omitting interesting approaches 
involving media encoding (e.g. [18]) and various network layer 
techniques (e.g. [17]). Overlay multicasting work (e.g. End-
System Multicast [12]) can be considered a precursor to “pure” 
peer-to-peer streaming. The tree-based structures typically used 
in the initial systems are constrained by the limited end-user 
upload bandwidth which limits the tree fan-out leading to large 
tree depths. This leads to high playback delays for leaf users 
and renders these systems susceptible to nodes leaving the 
system. These initial systems were followed by mesh-based 
architectures (e.g. SplitStream [13], CoopNet [14], PRIME [15] 
etc.) and the BitTorrent approach we elaborate upon in this 
paper can be seen as taking this approach to the extreme in 
allowing a different tree for each fragment. The BiToS [7] and 
the BASS [11] works explore using BitTorrent for streaming 
and, thus, are similar in spirit to our work in this paper. While 
[7] provides insights into designing fragment request policies, 
they only mention the importance of appropriate buffer size 
selection and do not explore it. Reference [11] proposes a 
hybrid server and peer-to-peer based streaming architecture as 
expounded in this paper but only offers simulation results on 
the savings in the server-side capacity that can be achieved 
with a BitTorrent-like peer-to-peer approach to supplement the 
server-based streaming. Our work in this paper adds analytical 
basis to the work in [11] and complements the work in [7]. 
Reference [16] suggests modifications to peer selection and 
fragment request policies to support streaming applications 
and, thus, is complementary to [7] and our work.  
CoolStreaming [3] is a frequently cited work in peer-to-peer 
live streaming (other widely deployed publicly available peer-
to-peer live streaming systems such as PPLive [5] are 
proprietary). CoolStreaming’s core operations (periodically 
exchanging data availability information and downloading 
unavailable data from and uploading available data to 
appropriate peers) are same as in BitTorrent. However, [3] does 
not discuss the trade-offs involved in selecting the buffer size 
or the target number of peers to maintain connections. Thus, 
our work in this paper complements the ideas in [3] and 
provides an analytical basis for selecting the fragment size, the 
peer group size and the buffer size in a CoolStreaming-like 
system. 

III. PEER-TO-PEER: BENEFITS AND LIMITATIONS 
The target audience of large-scale live video streaming has 

asymmetric broadband access. For example, while the average 
residential broadband download rates in the United States are 
around 2.8 Mbps, the corresponding upload rates average to 
only about 500 kbps (see [9] for current statistics). Clearly, it is 
not possible to support any live streaming at rates greater than 
500 kbps with a pure peer-to-peer live streaming solution even 
though the download rates allow offering MPEG-1 or better 
quality streams. Thus, major commercial vendors are unlikely 
to find pure peer-to-peer live streaming to be adequate in face 
of competitive pressures. However, effectively leveraging the 
peer upload bandwidths to assist server-based stream delivery 
can still offer tremendous competitive advantage. In Figure 1, 
we show the server-side capacity requirement as the number of 
users increases for different streaming rates and for different 
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Figure 1.  Benefits of using a well-designed peer-to-peer  solution 
(Assumption: Peer Upload Capacity is 400 Kbps) 

values of the effectiveness of the peer-to-peer solution in 
utilizing peer upload bandwidths1. 

The first observation we make from Figure 1 is that the 
server-side capacity required to support 350 kbps streaming 
rate for 100,000 users when no peer-to-peer solution is used is 
sufficient to support a streaming rate of 700 kbps if the server-
side infrastructure is augmented with BitTorrent-like peer-to-
peer fragment exchanges among the peers viewing the same 
stream which can utilize 90% of the total peer upload capacity. 

The second observation we make is the importance of a 
well-designed peer-to-peer solution – the difference in the 
server-side capacity needed to support 100,000 users at 700 
kbps streaming rate is 12 Gbps between a solution that can 
utilize 50% of the total peer upload capacity versus one that 
can utilize 80% of the total peer upload capacity. 

In the remaining paper, we explore the key factors that 
determine the peer upload capacity utilization in BitTorrent-
like peer-to-peer fragment exchange scenarios to inform the 
design of a peer-to-peer live video streaming system. 

IV. PEER GROUP SIZE 
As illustrated in the previous section, the fraction of the total 
peer upload capacity that can be utilized is the key metric for 
capacity planning purposes. The fraction of the total peer 
upload capacity that can be utilized to support the peer-to-peer 
live streaming application is the probability that, in a group of k 
peers, there exists at least one peer that needs one of the 
fragments a peer has2. Assuming that the fragments each peer 
has are chosen at random from the set of all the fragments that 

 

                                                        
1 If the peer-to-peer solution can, on average, utilize η fraction the peer 

upload capacity and the peer upload capacity is c, the server side capacity 
needed to support a streaming rate of x to k users is equal to max(0, k(x−ηc)). 

2 To ensure the highest possible utilization of peer upload capacities, a peer 
should apply tit-for-tat-like upload policies only to select which peer to upload 
to when there are more than one peers requesting content from it. In other 
words, peers (e.g., say, peer A) should always be uploading fragments (i.e. 
peer upload capacity is being utilized) as long as there exists another peer, say, 
peer B that wants a fragment that peer A has. 
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Figure 2.  Effect of Peer Group Size on the Efficiency of Fragment Exchange 

are currently relevant3 and the fragments each peer has are 
independently chosen, this probability, the efficiency for 
BitTorrent-like fragment exchange scenarios, is computed in 
[10] to be4: 
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where N is the number of fragments available for sharing 
and k is the number of peers in the group of cooperating peers 
in the fragment exchange. We note that, as [10] stated, their 
approximation for this expression of η is valid only when N is 
large as is the case in typical BitTorrent file-sharing scenarios 
(which have over a thousand fragments per file). However, in a 
live streaming scenario, future fragments are not available and, 
if the offering to remain competitive to a purely server-based 
streaming solution, the “live” stream must be played out within 
10-20 seconds including any transmission delays. Thus, the 
aggregate size of the fragments available for sharing is limited 
to few seconds worth of playback buffer. In Figure 2, we show 
the effect of k, the peer group size, on the efficiency of 
fragment exchange process for different values of N, the 
number of fragments available for sharing (with η calculated 
using Eq. 1). 

From Figure 2, we see that the peer group size has no effect 
on the efficiency once the peer group size is more than 7-8. 
Given that Eq. 1 is derived under the assumption of 

                                                        
3 For BitTorrent file-sharing, this includes all the fragments of the file 

being downloaded. For live streaming, it includes only the fragments available 
in the few seconds of the playback buffer each peer maintains. 

4 For completeness, we outline the derivation in [10] here. Let peer i have 
ni out of the N fragments where ni is uniformly distributed in {0, …, N−1}. 
When the required total streaming rate is more than the total peer upload 
capacity, a peer’s upload capacity will not be utilized only if every other peer 
has all the fragments it has. Therefore,  
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independence, we believe that maintaining a peer group size of 
15-20 peers would be a more appropriate target for a peer-to-
peer live streaming application. 

From Figure 2, we note that the number of fragments 
available for sharing is a more important factor in determining 
the level of efficiency possible. We explore this in the next 
section. 

V. NUMBER OF FRAGMENTS AVAILABLE FOR SHARING 
Expanding the summation term in Eq. 1, we can write: 
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For peer groups of size larger than 10, the value of R’/N is 
negligible5. Therefore, a reasonable approximation for η, the 
efficiency of fragment exchange in BitTorrent-like systems, is: 

 11
N

η ≈ −  (2) 

In Figure 3, we plot η, the efficiency of fragment exchange, 
against N, the number of fragments available for exchange, 
using Eq. 2. 

As we can see from Figure 3, the efficiency of fragment 
exchange depends heavily on the number of fragments 
available for exchange but there are diminishing returns as the 
number of fragments get large. For example, if the number of 
fragments available for sharing is doubled from 5 to 10, the 
efficiency increases from 0.8 to 0.9 (which, for the scenario in 
Figure 1, translates into a saving of 4 Gbps of server side 
capacity with 100,000 users) but doubling the number of 
fragments available for sharing from 40 to 80 increases the 
efficiency from 0.975 to only 0.9875 (equivalent to a saving of 
0.5 Gbps of server side capacity for 100,000 users for the 
scenario in Figure 1). The diminishing returns behavior of the 
relation between the number of fragments available for sharing 
and the efficiency is important as increasing the fragments 
available for sharing directly increases the lag a user will 
experience in the stream playback. In the next section, we 
explore the implications of this on BitTorrent-based live video 
streaming system design. 

                                                        
5 R is strictly decreasing with increasing k. In our computations for k = 10 

and N varying from 2 to 100, the value of R/N never exceeded 3.5x10−5 and 
was decreasing with N for N > 3. 
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Figure 3.  Effect of the Number of Fragments available for sharing on the 
Efficiency of Fragment Exchange 

VI. BITTORRENT-BASED LIVE VIDEO STREAMING DESIGN 
Our analysis in Section 4 indicates that a peer group size of 

15-20 peers is sufficient to realize the peer upload capacity 
utilization benefits a large peer group offers. BitTorrent does 
try to maintain over 20 peers so the peer group maintenance 
aspect of the basic BitTorrent protocol does not need any 
modification. 

Let us now consider the implications of our results in 
Section 5 on the effect of the number of fragments available for 
sharing on the efficiency of fragment exchange. Let us say that 
we wish to achieve 97.5% utilization of the peer upload 
capacity. From Figure 3, this implies that there be 40 fragments 
available to be shared. For the default BitTorrent fragment size 
of 256KB, this is equivalent to a buffer size of 10 MB. This 
buffer is in addition to what a streaming player keeps 
“internally” to account for network uncertainties. For a 700 
kbps stream, 10 MB of buffering is equivalent to an additional 
playback delay of nearly 2 minutes which is unlikely to be 
acceptable for a “live” streaming application (this delay does 
go down for higher-rate streams but even with a 1.5 Mbps 
stream it remains over 50 seconds). 

One option to reduce the playback delay while maintaining 
high efficiency values is to use smaller fragments. BitTorrent 
allows fragments as small as 32KB while the sub-piece size is 
16KB (BitTorrent breaks each fragment into sub-pieces to 
allow pipelining of requests). By using a fragment size of 
32KB, the required buffer size and, consequently, the playback 
delay can be cut by a factor of 8 (e.g. for a 1.5 Mbps stream it 
goes down to under 7 seconds). The argument against small 
fragment size for BitTorrent file transfers is that a small 
fragment size will result in a very large torrent file (as a hash 
for each fragment is included in the torrent file) which 
increases the load on the server hosting the torrent. In the live 
streaming case, the fragments are not available ahead of time 
so this is not an issue. However, there are limitations on how 
small a fragment ought to be. If we wish to support a 700 kbps 
stream and target a playback delay on account of achieving 
high fragment exchange efficiency to be around 6 seconds, this 
is equivalent to 540 KB. If we wish to achieve 97.5% 
utilization of the peer upload capacity, we need 40 fragments of 
buffering or a fragment size of 13.5 KB. The equivalent 
fragment size for a 350 kbps stream would be 6.75 KB which is 



getting close to the popular MTU size of 1500 bytes (if we 
wish to pipeline requests, a smaller fragment size implies a 
smaller sub-piece size but going below a sub-piece size smaller 
than the MTU size will be wasteful). 

We can summarize the relation between the playback delay 
introduced to allow fragment exchange, the fragment size, the 
streaming rate and the fraction of the peer upload capacity that 
can be utilized as follows: 

 1 S
R

η
τ

≈ −  (3) 

where η is the fraction of the peer upload capacity that can be 
utilized, S is the fragment size, τ is the playback delay 
introduced to allow fragment exchange, and R is the streaming 
rate (N fragments of size S each imply a buffer size of NS 
which at streaming rate R would lead to a playback delay of 
NS/R; substituting N = τR/S in (2) gives (3)). 

There are other modifications that one may wish to do to 
the basic BitTorrent protocol. As we noted in Footnote 1, the 
peers should use tit-for-tat policy only for peer selection and 
not “choke” uncooperating peers if that implies not uploading 
to any peer. One may also wish to alter the tit-for-tat policy to 
fulfill fragment requests that are close to missing the playback 
deadlines. One would also want to alter the rarest-first fragment 
request policy (i.e. asking for the fragment that fewest peers 
have) to one where the fragments close to missing the playback 
deadlines are requested with a higher priority (see [7]). There 
can be other modifications e.g. in the information that the 
tracker keeps or the list of peers that the tracker returns and we 
hope to evaluate the other design choices in future work. 

VII. CONCLUSION 
Using BitTorrent-like peer-to-peer technology to support 

live video streaming over the Internet is an attractive option for 
major commercial players in the video streaming area. In this 
paper, we argue that a pure peer-to-peer live streaming solution 
cannot deliver high-quality streams and the peer-to-peer 
solution must be supplemented with server-side capacity. The 
paper points out the importance of a well-designed peer-to-peer 
solution in such a system and proceeds to explore the key 
design factors that determine the server-side capacity that 
would be needed to support a target streaming rate to a given 
number of users. We show that a peer group size of 15-20 peers 
is sufficient to achieve any benefits a large peer group size 
would offer. A more important factor in determining the server-
side capacity that would be needed to support a target 
streaming rate to a given number of users is the number of 
fragments that are available for sharing. We provide an 
analytical expression to compute the fraction of the total peer 
upload capacity that can be utilized given the number of 
fragments that are available for sharing. The number of 

fragments available for sharing directly affects the playback 
delay users would experience and it is important to balance the 
goal of small playback delay against the objective of utilizing 
as much of the peer upload capacities as possible. To inform 
the selection of the appropriate fragment size, we provide an 
analytical expression to compute the fraction of the peer upload 
capacity that can be utilized for a given fragment size given a 
target playback delay on account of fragment exchange and the 
streaming rate. 
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